Artificial Benchmark for Community Detection (ABCD): Fast Random Graph Model with Community Structure

, ,  -

Publications: arXiv Add/Edit

Abstract: Add/Edit

Most of the current complex networks that are of interest to practitioners possess a certain community structure that plays an important role in understanding the properties of these networks. Moreover, many machine learning algorithms and tools that are developed for complex networks try to take advantage of the existence of communities to improve their performance or speed. As a result, there are many competing algorithms for detecting communities in large networks. Unfortunately, these algorithms are often quite sensitive and so they cannot be fine-tuned for a given, but a constantly changing, real-world network at hand. It is therefore important to test these algorithms for various scenarios that can only be done using synthetic graphs that have built-in community structure, power-law degree distribution, and other typical properties observed in complex networks. The standard and extensively used method for generating artificial networks is the LFR graph generator. Unfortunately, this model has some scalability limitations and it is challenging to analyze it theoretically. Finally, the mixing parameter $\mu$, the main parameter of the model guiding the strength of the communities, has a non-obvious interpretation and so can lead to unnaturally-defined networks. In this paper, we provide an alternative random graph model with community structure and power-law distribution for both degrees and community sizes, the Artificial Benchmark for Community Detection (ABCD). We show that the new model solves the three issues identified above and more. The conclusion is that these models produce comparable graphs but ABCD is fast, simple, and can be easily tuned to allow the user to make a smooth transition between the two extremes: pure (independent) communities and random graph with no community structure.

Keywords: Add/Edit

Code Links

Languages: Julia Add/Edit

Libraries: Add/Edit

Description: Add/Edit

Artificial Benchmark for Community Detection (ABCD) - A Fast Random Graph Model with Community Structure